首页> 外文OA文献 >Coriolis mass flow rate meters for low flows
【2h】

Coriolis mass flow rate meters for low flows

机译:科里奥利质量流量计,用于低流量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do not need complicated translation or linearization tables to compensate for other physical parameters (e.g. density, state, temperature, heat capacity, viscosity, etc.) of the medium that they measure. This also makes Coriolis meters versatile – the same instrument can, without need for factory calibration, measure diverse fluid media – liquids as well as gases. Additionally, Coriolis meters have a quick response, and can principally afford an all-metal-no-sliding-parts fluid interface. A Coriolis force is a pseudo-force that is generated when a mass is forced to travel along a straight path in a rotating system. This is apparent in a hurricane on the earth (a rotating system) where, when air flows towards a low-pressure region from surrounding areas, instead of following a straight path it “swirls��? (in a {towards + sideways} motion). The sideways motion component of the swirl may be attributed to the Coriolis (pseudo)force. To harness this force for the purpose of measurement, a rotating tube may be used. The measurand (mass flow rate) is forced through this tube. The Coriolis force will then be observed as a sideways force (counteracting the swirl) acting upon this tube in presence of mass-flows. The Coriolis mass flow meter tube may thus be viewed as an active measurement – a “modulator��? where the output (Coriolis force) is proportional to the product of the excitation (angular velocity of the tube) and the measurand (mass flow rate). From a constructional viewpoint, the Coriolis force in a Coriolis meter is generated in an oscillating (rather than a continuously rotating) meter-tube that carries the measurand fluid. In such a system (typically oscillating at a chosen eigenfrequency of the tube-construction), besides the Coriolis force, there are also inertial, dissipative and spring-forces that act upon the meter tube. As the instrument is scaled down, these other forces become significantly larger than the generated Coriolis force. Several “tricks��? can be implemented to isolate these constructional forces from the Coriolis force, based on orthogonality – in the time domain, in eigenmodes and in terms of position (unobservable & uncontrollable modes, symmetry, etc.). Being an active measurement, the design of Coriolis flowmeters involves multidisciplinary elements - fluid dynamics, fine-mechanical construction principles, mechanical design of the oscillating tube and surroundings, sensor and actuator design, electronics for driving, sensing and processing and software for data manipulation & control. This nature lends itself well to a mechatronic system-design approach. Such an approach, combined with a “V-model��? system development cycle, aids in the realization of a Coriolis meter for low flows. Novel concepts and proven design principles are assessed and consciously chosen for implementation for this “active measurement��?. These include: - shape and form of the meter-tube - a statically determined affixation of the tube - contactless pure-torque actuator for exciting the tube - contactless position-sensing for observing the (effect of) Coriolis force - strategic positioning of the sensor & actuator to minimize actuator crosstalk and to maximize the position sensor ratio-gain - ratiometric measurement of the (effect of) the Coriolis force to identify the measurand (i.e. the mass flow rate) - multi-sensor pickoff and processing based solely on time measurement – this is tolerant to component gain mismatch and any drift thereof - measurement of temperature and correction for its effect of tube-stiffness. The combined effect of these and other choices is the realization of a fully working prototype. Such prototype devices are presented as a test case in this thesis to assess the effectiveness of these choices. A “V-model��? system-development cycle involves the critical definition of requirements at the beginning and a detailed evaluation at the end to verify that these are met. To reduce ambiguity of intent, several test methods are defined right at the beginning with this model in mind. These end-tests complete the “cycle��? – a loop that began with the concepts and with the definition of requirements. However, a V-model also entails shorter iterative cycles that help refine concepts and components during the intermediate design phases. Such “inner loops��? are also presented to illustrate design at subsystem and component levels. A Coriolis flowmeter prototype with an all-steel fluid-interface is demonstrated, that has a specified full-scale (“FS��?) mass flow rate of 200 g/h (~55 mg/s) of water. This instrument has a long-term zero-stability better than 0.1% FS and sensitivity stability better than 0.1%, density independence of sensitivity (within 0.2% for liquids), negligible temperature effect on drift & sensitivity, and a 98% settling time of less than 0.1 s. For higher and/or negative pressure drops, these instruments have been seen to operate from –50´FS to +50´FS (i.e. from –10 kg/h to +10 kg/h) without performance degradation – particularly important in order to tolerate flow-pulsations in dosing applications. Finally, the results of the present work are discussed, and recommendations are made for possible future research that would add to it. Two important recommendations are made - about the possibility to seek, by means of an automated optimization algorithm, an improved tube shape for sensing the flow, and about constructional improvements to make the measuring instrument more robust against external vibrations.
机译:准确,快速地测量小质量流量(〜10 mg / s)的流体被认为是“使能技术”?在半导体,精细化工以及食品和药品行业。基于科里奥利效应的流量计可以最直接地感测质量流量,因此不需要复杂的平移或线性化表即可补偿其他物理参数(例如密度,状态,温度,热容量,粘度等)。 )。这也使科里奥利仪表具有多功能性-同一台仪器无需工厂校准即可测量各种流体介质-液体和气体。此外,科里奥利仪表具有快速响应能力,并且原则上可以提供全金属无滑动部件的流体接口。科里奥利力是当质量被迫沿旋转系统中的直线路径行进时产生的伪力。这在地球上的飓风(旋转系统)中很明显,在那里,当空气从周围区域流向低压区域时,它不是沿着直线运动而是“旋转”? (以{向+侧向}运动)。旋流的侧向运动分量可以归因于科里奥利(伪)力。为了利用该力进行测量,可以使用旋转管。被测物(质量流量)被迫通过该管。然后,在存在质量流的情况下,科里奥利力将作为作用在该管上的侧向力(抵消旋涡)被观察到。因此,科里奥利质量流量计管可以看作是主动测量–“调制器”?其中输出(科里奥利力)与激发(管的角速度)和被测量物(质量流量)的乘积成正比。从结构的角度来看,科里奥利仪表中的科里奥利力是在振荡(而不是连续旋转)的载有被测流体的仪表管中产生的。在这种系统中(通常以选定的管道结构固有频率进行振荡),除了科里奥利力外,还有惯性力,耗散力和弹簧力作用于计量管。当仪器按比例缩小时,这些其他力会大大大于生成的科里奥利力。几个“技巧”?可以在时域,本征模态和位置(不可观测和不可控制的模态,对称性等)的正交性基础上实现将这些构造力与科里奥利力隔离的功能。作为一项活跃的测量,科里奥利流量计的设计涉及多学科的元素-流体动力学,精细机械构造原理,振荡管和周围环境的机械设计,传感器和执行器设计,驱动电子,传感和处理电子设备以及数据处理与软件控制。这种性质非常适合机电系统设计方法。这种方法与“ V模型”相结合?系统开发周期有助于实现低流量的科里奥利仪表。评估并有意识地选择了新颖的概念和经过验证的设计原则,以实施这种“主动测量”。其中包括:-计量管的形状和形式-静态确定的管固定件-用于激励管的非接触式纯扭矩执行器-用于观测科里奥利力(作用)的非接触式位置感应-传感器的战略定位&执行器,以最大程度地减少执行器串扰并最大化位置传感器的比例增益-对科里奥利力(的影响)进行比例式测量,以识别被测量物(即质量流率)-仅基于时间测量的多传感器拾取和处理–容忍元件增益失配及其任何漂移–测量温度并校正其管刚度的影响。这些选择和其他选择的综合效果是实现了完全正常工作的原型。本文将此类原型设备作为测试案例,以评估这些选择的有效性。一个“ V型”?系统开发周期从一开始就对需求进行了严格的定义,在结尾处进行了详细的评估,以验证这些需求是否得到满足。为了减少意图的歧义,考虑到该模型,一开始就定义了几种测试方法。这些最终测试完成了“周期”? –从概念和需求定义开始的循环。但是,V模型还需要较短的迭代周期,这有助于在中间设计阶段改进概念和组件。这样的“内循环”?本文还介绍了子系统和组件级别的设计。演示了具有全钢流体接口的科里奥利流量计原型,它具有200 g / h(〜55 mg / s)的水的规定满量程(“FS��?”)质量流率。该仪器具有优于0.1%FS的长期零稳定性和优于0.1%的灵敏度稳定性,灵敏度的密度独立性(对于液体为0.2%以内),温度对漂移和灵敏度的影响可忽略不计,以及98%的稳定时间少于0.1 s。对于较高和/或负压降,这些仪器的工作温度范围为–50´FS至+ 50´FS(即–10 kg / h至+10 kg / h),而性能不会降低–对于在计量应用中可以承受流量脉动。最后,对当前工作的结果进行了讨论,并提出了建议,以便将来可能进行的进一步研究。提出了两个重要的建议-关于通过自动优化算法寻求改进的管形以感测流量的可能性,以及关于使测量仪器更坚固以抵抗外部振动的结构改进。

著录项

  • 作者

    Mehendale, A.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 und
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号